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The general characteristics of the energy spectrum for internal gravity waves in the ocean are well
known from the large body of recent experimental observations. The theoretical understanding has not
developed at the same rate, perhaps due to the limitation of linear or quasi-linear theories, which can
cope only with weak interaction processes and are inadequate for representing the more violent and spo-
radic wave breaking processes present in nature. A detailed study of energy transfer among two-dimen-
sional internal gravity modes in a fully nonlinear regime was performed. Wave-wave interactions and
overturning were included in the solutions of a two-dimensional numerical model, and the results are
presented here. A background spectrum of finite amplitude, random internal gravity wave field was gen-
erated by a long time integration of a two-dimensional model with random body forcing. Over this back-
ground field, two sets of experiments were performed: spike-random, where energy at low, medium, and
high wave numbers were introduced and integrated in time, and band-random, where energy was in-
troduced over a band of wave numbers instead of introducing only discrete modes. The results can be
summarized as follows. Multiple triad interactions will result in a filling of the energy spectrum when
energy is introduced in a particular band of wave numbers. For bands where the energy level is high
enough to result in nonlinear time scales of only a few intrinsic periods, wave-wave interactions (resonant
.and nonresonant) provide the mechanism for filling the spectrum. The energy transfer becomes more and
more rapid with increasing energy, and no universal spectrum appears to result from these processes. As
the energy input increases, energy will accumulate in high wave numbers until localized instabilities (over-
turning) occur. From that point on, these high wave numbers will remain at a saturation such that any
additional energy input at the saturated band, either directly or via wave-wave interactions, will result in
localized mixing. On the other hand, additional energy input at bands other than the saturated band will
result in an increase of low and medium wave band energy (via wave-wave interactions) until an equilib-
rium level is achieved. The equilibrium level of any particular band will depend on the high wave num-
ber bands’ being saturated. For instance, any energy above the equilibrium at low wave numbers will
produce localized mixing in physical space almost instantaneously. This does not mean that the low wave
numbers are saturated, as their energy levels can be much lower than a saturation level. What takes place
at or near an equilibrium level is that the contributions from high and low wave numbers result in local-
ized regions in physical space where the criterion for instability is almost met. In fact, this superposition
effect means that low and medium wave numbers are far from meeting any breaking criterion when
taken individually, yet cannot tolerate any additional input energy when in the presence of a saturated
band of high wave numbers. It was found also that the dissipation is approximately constant over the
wave numbers and small compared with the large transfer of energy between neighboring waves. How-
ever, if bands of waves are considered, very little energy is transferred between neighboring bands above
the equilibrium level. Rather, a direct cascade of energy from low to high wave numbers occurs due to
localized instabilities which result in overturning, and it is this amount of energy flux which is dissipated
by the high wave numbers.

1. INTRODUCTION

ity waves has grown considerably. A lucid exposition of oce-

The important role of internal gravity waves in geophysical
systems has been recognized for some time, especially in the
case of very stable systems such as the ocean. The large body
of evidence for the existence of oceanic internal gravity waves
began with the temperature measurements of LaFond [1949]
and Charnock [1965] and the long time current meter records
obtained by Webster [1969] and Fofonoff and Webster [1971].
The number and quality of internal gravity wave field mea-
surements have grown dramatically since the early 1970’s, and
a variety of techniques has been employed to obtain measure-
ments suitable to give wave number and frequency spectra in
different parts of the world oceans. Concurrent with the obser-
vational advances, our theoretical knowledge of internal grav-
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anic internal waves can be found in Thorpe’s [1975] review
article, and an up-to-date interpretation of the latest advances
can be found in Phillips [1977].

The purpose of this study is to investigate the means by
which energy is transferred among internal gravity waves. The
transfer of energy in weakly interacting flows is characterized
by resonant interactions in which the interaction time scale is
much greater than the component wave periods [Miiller and
Olbers, 1975; McComas and Bretherton, 1977]. The energy
transfers occurring in a more nonlinear system, where inter-
action time scales can be larger or of the same order as the
wave period (strong interaction), were practically untreated.
In the present study, we will discuss the dynamics of waves
and the building of an energy spectrum in such a nonlinear
regime. Such a regime is perhaps more characteristic of the
natural state of the ocean with regard to internal gravity
waves. Let us therefore summarize the highlights of the scien-
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tific works which have provided today’s picture of internal
waves in the ocean.

Characteristics of the energy density as a function of hori-
zontal wave number have emerged from data based on towed
sensor [Charnock, 1965; Katz, 1975] and moored spatial array
measurements (internal wave experiment (IWEX), Miiller et
al. [1978]). Basically, one has that the energy spectrum is hor-
izontally isotropic and depends upon horizontal wave number
asthe —2.5 power. Measurements of vertical structure [Hayes,
1975; Leaman and Sanford, 1975; Miiller et al., 1978] show
that a model representation is appropriate for high-frequency
internal waves (close to the local buoyancy frequency), while
low-frequency waves (close to the local inertial frequency)
may be represented as a superposition of freely propagating
upward and downward waves, where the vertical energy
fluxes need not be balanced. Long, fixed point records of hori-
zontal velocities were obtained by Fofonoff and Webster [197 1]
and Gould et al. [1974], while Cairns [1975] obtained long iso-
therm displacement records using an instrumented buoy
which ‘yo-yoed’ about a fixed isotherm. The spectral picture is
one where energy is predominantly contained in a band be-
tween the local inertial frequency and the local buoyancy fre-
quency. The energy density may be approximated by an w2
(w is the frequency) dependence with predominant spectral
peaks at the local inertial and tidal frequencies. A less pro-
nounced peak exists near the local buoyancy frequency, and a
sharp roll-off in energy occurs beyond this frequency. Finally,
the similarity of the appropriately normalized energy spectra
from various world ocean sites can be interpreted as the exis-
tence of a degree of universality for the spectral band repre-
senting oceanic internal gravity waves.

An empirical formulation relating wave number and fre-
quency spectra for internal waves was proposed by Garrett
and Munk [1972a, 1975] and provided a consistent framework
for the large body of data taken with various techniques. Uni-
versality and horizontal isotropy, as well as the kinematic
characteristics of internal gravity waves, were invoked to for-
mulate their empirical relations. It is clearly understood that
this formulation does not contain any description of the dy-
namics which give rise to the observed spectra. The recurring
spectral shape obtained from field data, universal or not,
opens the question of what are the mechanisms which achieve
this spectral shape and what is the time scale for relaxing to this
shape, since the oceans are continually being forced in various
spectral bands. The problem of energy distribution among in-
ternal waves and the description of the energy spectrum in
terms of such transfers have been studied since the last dec-
ade.

Theoretical work on the slow or weak interaction for three
discrete, resonantly interacting waves was done by Bretherton
[1964] and Phillips [1966], while Davis and Acrivos [1967] were
the first to experimentally observe triad resonance, using a
two-layer stratified fluid. The time scale for such interactions
was found to be inversely proportional to the square root of
the total triad energy. Typically, this time scale is much
greater than the wave periods, justifying the weak interaction
assumption. Laboratory experiments on triad resonance in
linearly stratified fluids were performed for horizontally prop-
agating internal waves by Martin et al, [1972] and for modes
by McEwan et al. [1972]. These experiments showed that
whenever a single triad is initiated, other resonant triads will
also be excited, and that the wave-wave interaction is stronger
for higher frequency waves than for the lower-frequency
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waves. This cascade phenomenon implies that three discrete,
interacting waves is not a good model of wave-wave inter-
action, even in the weak regime, since the simultaneous ex-
citation of other triads is continually occurring. It is apparent
from the observed oceanic spectra that wave-wave inter-
actions must be treated in a continuous spectrum, and theoret-
ical work along these lines was done by Miiller and Olbers
[1975] and McComas and Bretherton [1977] using a methodol-
ogy developed by Hasselmann [1966, 1967]. McComas and
Bretherton studied the manner in which weakly interacting
waves decay in different parts of the spectrum, and interaction
coefficients were calculated only for resonantly interacting
waves. However, their results show that the interaction time
could be very rapid (a few periods). This opens the question of
whether only resonantly interacting waves should be consid-
ered, or perhaps, waves which are nonresonantly forced must
also be considered. More important is the question of wave
breaking versus wave-wave interactions as a mechanism for
limiting wave amplitudes. Phillips [1977] discusses a scenario
whereby the lower modes are limited by wave breaking rather
than the transfer of energy to higher modes. Two types of
wave breaking can occur: (1) a shear instability, as discussed
by Phillips [1966], which requires a local Richardson number
to be less than ', and (2) a finite amplitude gravitational in-
stability discussed by Orlanski and Bryan [1969] and Orlanski
[1972] which requires that a locally unstable stratification ex-
ists. (The criterion for a single wave is that the fluid parcel ve-
locity exceeds the phase velocity.) Both types can occur in the
ocean, and their occurrence is probably enhanced due to the
presence of a large number of waves. That is, a single wave
may not satisfy either breaking condition, but when the many
other waves are superimposed, the breaking conditions may
be satisfied.

The concern over which breaking mechanism is operating
in the ocean may be important for the estimation of dis-
sipation due to wave breaking, and for predicting a critical
wave spectrum amplitude. However, previous attempts to en-
hance the importance of shear instability or gravitational in-
stability [Garrett and Munk, 1972b; Frankignoul, 1972] show
contradictory results. In fact, Eriksen [1978] recently has
found that both types of breaking are possible and breaking
appears equally likely at all frequencies in the internal wave
range. Perhaps, the simple picture put forward by Phillips
[1966] should be reconsidered. The scenario is one where the
amplitude of the low modes is limited by localized shear insta-
bility, while the amplitude of the higher modes is determined
by wave-wave interactions. Two features of the oceanic
spectra work against such a model. First, wave breaking ap-
pears to be occurring at all frequencies (modes) and, second,
the interaction times associated with the Garrett and Munk
spectrum are the same order of magnitude as typical wave pe-
riods [McComas and Bretherton, 1977). This ‘rapid’ interaction
time is inconsistent with the weak interaction approximations.

Orlanski and Cerasoli [1979] treated the wave-wave inter-
action problem for nonrotating two-dimensional internal
gravity waves using (1) the integration of the gyroscopic equa-
tions, (2) a numerical simulation which allowed the modeling
of dissipation due to wave breaking, and (3) laboratory exper-
iments. The study provided the logical framework for treating
wave systems with an increasing number of degrees of free-
dom, and the laboratory data provided verification of the nu-
merical simulation. The sensitivity of three and four wave
triad interactions to the presence of other waves was clearly
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Fig. 1. Stream function and energy versus time from the integration shown in Figure 1 are presented in the upper por-
tion. Stream function and density perturbation contours at various times are shown in the lower portion, and the stippling

in the plot shows regions of probable wave breaking.

demonstrated, and the importance of wave breaking for limit-
ing wave amplitudes was established. A number of results
from that study can be summarized using Figure 1. The nu-
merical simulation was used to model the growth due to sur-
face forcing of a mode unstable to triad resonance. By a time
of 40 buoyancy periods (7), the forced wave has been estab-
lished, as seen in the streamline contours in the lower portion
of the figure. The field was Fourier decomposed and the
stream function and energy of the four resonantly interacting
modes are shown in the upper and middle portion of Figure 1,
respectively. The triad partners grow at the expense of the
forced mode from approximately 407 to 607, and the evolu-
tion is similar to that predicted by classical theory of triad in-
teraction. After this point, the flow field becomes complex as
the four primary triad waves attain comparable amplitudes
and other nonprimary waves are excited. Wave breaking is a
prominent feature, and areas of overturning are marked with
stippling in the isopycnic contours. Results indicated that the
saturation amplitude of the forced mode was controlled by
wave breaking rather than by triad interactions.

The present work continues this treatment of nonrotating,
two-dimensional internal waves where the dissipative effect of
wave breaking can be realistically modeled. In particular, the
manner in which wave breaking and wave-wave interactions
act to maintain the amplitude and shape of internal wave

spectra is studied. The large number of waves necessary to ac-
curately model a spectrum of interacting, finite amplitude in-
ternal waves necessitated using a two-dimensional model to
keep the problem tractable. One purpose of this work was to
demonstrate the importance of wave breaking in determining
spectral amplitudes, and having established this, one may as-
sume the wave breaking will be as important (if not more so)
in three dimensions where a rapid cascade of energy to small
scales occurs. In section 2, the equations of motion are pre-
sented along with a description of the numerical model. The
creation of a spectrum of random, internal gravity waves is
discussed in section 3, and the characteristics of this internal
wave field are presented. This background field of waves was
perturbed by introducing energy either in discrete modes, or
in a band of wave numbers, and the results are discussed in
sections 4 and 5, respectively. The energy fluxes and dis-
sipation are presented in section 6. Sensitivity studies on the
equilibrium spectrum described in section 5 are shown in sec-
tion 7. Section 8 includes the summary and conclusions.

2. EQUATIONS OF MOTION: TRUNCATED SPECTRA
AND TwO-DIMENSIONAL NUMERICAL MODEL

Let us consider a two-dimensional container of length L
and height H filled with a linearly stratified fluid of density p
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= po(1 + Bz). The two dimensionality allows the system to be
described by the following equations for vorticity and density:

gl - J(‘P’ g) = gex + V(va) (l)
§=V4 ()
0, —JW, ©) =By, + V(xVO) 3

where  is the stream function and u = y,, w = —,,. Horizon-
tal and vertical velocity components are u and w, respectively,
and © is the density departure divided by p,, © = (p — 0)/ o
The eddy conductivity and diffusivity are k and », and their
proper form will be discussed in section 3.

Free slip boundary conditions are used for stream function
and vorticity at the side walls and bottom boundary,

Yy=£=0 x=0L
Yy=£(=0 z=0

and the adiabatic conditions for the density perturbation are
used,

0,=0
6.=0

x=0,L
z=0

The boundary conditions at z = H are either rigid,

y=£(=0 z=H
or forced,
Y= f(x,1) z=H
(=J.  z=H
6,=0 z=H

where f(x, 7) is prescribed.

The vorticity and density equations (1) and (3) were in-
tegrated with a finite difference scheme. A rectangular tank
was modeled with 51 horizontal points and 61 vertical points,
and allowed the resolution of some 200 waves. The details of
the model were described by Orlanski and Ross [1973]; the
model uses a standard leap frog, energy-conserving scheme
with an exact Poisson solver for the stream function. The
height and length of the tank were 81 and 150 cm, respec-
tively, for comparative purposes with laboratory experiments.

The effects due to subgrid scale motion were modeled with
a method detailed elsewhere [Orlanski and Ross, 1973; Or-
lanski et al., 1974] by use of an eddy diffusivity and con-
ductivity defined as follows:

13 " 1/3
v= L[l+ InLin Ei :] 0,<0

K Knese, \VLKL
K=, 0,>0 @
K=K, 0,>0

The diffusivity and conductivity were divided into two parts,
one was constant valued, while the other was a nonlinear part
which depended on the local Rayleigh number when a locally
unstable density region was present. This method was found
to be very efficient for simulating the dissipation due to the
breaking of internal gravity waves. Preliminary experiments
showed that the spectra were relatively insensitive to a range
of values for vy, and »,. The values chosen were such that
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when no wave breaking occurred, the system evolved invis-
cidly (v, = 10~° cm?/s); when overturning occurred, the eddy
diffusivity attained a value consistent with measured values
from the laboratory or field (vy, ~ 1 cm?/s).

3. WAVE INTERACTIONS IN A
CONTINUOUS SPECTRUM

Numerical experiments were performed where energy was
either given to individual modes or a band of wave numbers
in a random background field of internal gravity waves, and
the energy transfer from either the modes or bands to the rest
of the spectrum was investigated. Six different experiments
will be discussed in this section, and the pertinent information
is given in Figure 2. In the first three experiments, called
spike-random, energy was introduced at distinct modes of
low, medium, and high wave numbers, while energy was
placed in low, medium, and high wave number bands in the
second three experiments. A description of the background
random field will be presented before discussing the energy
transfer experiments.

Random Internal Wave Field

The numerical model was integrated for a long duration
(10507), where T is the Brunt Vaisala period 27/N = 8.3 s).
The random body forcing was introduced in space and time to
the vorticity field. We can decompose the stream function
into Fourier components at any time ¢, as follows:

Y05, 2 1) = S sin 2% i V72 )
, L L

where L and H are the container length and height, respec-
tively, and the modes can be labeled (M, N). The total wave

number k for a particular mode is given by
oo [Ma)?, (Nn
e[+
The forcing was done by first randomly choosing a maximum
horizontal and vertical wave number, M,, and N,, respec-
tively. The coefficients y,, » were then assigned random values
from the gravest mode (1, 1) up to mode (M,,, N,,). This forc-
ing was applied at the random times ¢, and the characteristics
are shown in Table 1 for approximately a 2000 time step pe-
riod. The first column of Table 1 shows the random times at
which the forcing was applied, while the six columns show the
number of modes forced (Table 1; notice that Fourier com-
ponents with no x variation are possible (I = 0) but are not in-
cluded in Figure 2.) The maximum amplitude of the forcing
in vorticity was ~0.005 s™', which resulted in the build-up of a
random field of internal gravity waves at all resolvable space
and time scales. (The model resolves approximately 750 waves
with a total of 3000 grid points, and approximately 150 waves
are very well resolved (up to approximately (10, 15)). Most of
the waves to band 5 in Table 1 are well resolved.) The spectral
energy level increased monotonically in time until the com-
bined effects of the small amount of random noise plus the
existing finite amplitude waves produced localized over-
turning, which in turn, increased the overall eddy diffusivity
and caused a reduction in the energy growth. From that point
on, it became more and more difficult to increase the overall
energy level, implying that a saturation level was reached for
the model. We note that this does not mean all portions of the
spectrum are saturated, and this is not a saturated spectrum.

2
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Fig. 2. Distribution of wave numbers (I, J) initially forced in the six different experiments. Note the distribution of wave
numbers for each of the bands.

This question will be addressed in the subsequent series of ex-
periments.

Frequency spectra for the horizontal and vertical kmetlc
energies (ju.|?/2, |w.|*/2) and potential energy (g|p.|*/2N?)
were computed from time series taken at different positions in
the tank. The positions were C1(0.20L, 0.16H), C2(0.33L,
0.38H), C3(0.60L, 0.93H), and C4(0.81L, 0.50H), where the
origin of the (x, z) coordinates is at the lower left-hand corner
of the tank. The spectra were calculated from data blocks of
500-s duration (2000 time steps, or approximately 607) with a
total of 33 blocks (~7 X 10* time steps). The average spectra
and the dispersion due to the individual spectra for the hori-
zontal and vertical kinetic energies and the potential energy at
position C2 are p’resented in Figure 3. Note that the vertical
scale represents the energy (not the spectral energy dens1ty) at
each frequency increment; the more standard representation
of spectral energy density versus frequency on log-log scales
will be presented later. The horizontal kinetic energy is shown
in Figure 34, and the slopé is negative from low frequencies to
N and falls with a steep slope beyond N. At first sight, the dis-
persion appears large, although one must remember that early
data blocks enter into the dispersion when the energy level is
still low, and the dispersion for the final 10 data blocks is very
small. Small peaks can be observed superimposed on the
background spectrum, but the field is not dominated by dis-
crete modes. The average vertical kinetic energy is shown in
Figure 3b, and the energy level increases with frequency until
a maximum is reached near N, and then the energy abruptly
falls off, a result consistent with the spectral shape for internal
gravity waves. The average potential energy spectrum is given
in Figure 3¢ and shows a shallow decreasing of energy as fre-
quency increases up to N, and then falls rapidly. Inspection of
the spectra shows that the sum of the horizontal and vertical
kinetic energies will yield a spectral shape similar to the po-

tential energy spectral shape, as might be expected from the
equipartition of energy as applied to internal gravity waves.

This system of internal gravity waves is a fully nonlinear
one, and the degree of wave breaking is substantial. In fact,
energy contained in frequencies above N arises from either
forced nonlinear oscillations or turbulence due to wave break-
ing. Even so, the relationships between the various spectral
components and their shapes could be predicted by simple
linear theory. The lack of discrete modes dominating the solu-
tion can be clearly observed in Figure 4, where the average
potential energy spectra from the four positions, C1-C4, are
presented. The similarity is striking, although some small
peaks due to modes appear and are a function of position.

A measure of the stationarity of the random wave field en-
ergy can be seen in the wave number spectra corresponding to
the last 1000 s of the experiment, which is presented in Figure
5. These wave number spectra were computed at every time
step and then averaged over a block 250 s (~307) in duration.
The spectra represent the energy at each wave number inter-

Y

TABLE 1. Number of Modes Forced and Corresponding Random
Times
Time of
Random © Wave Band
Input - -
4 1 2 -3 4 5 6
0 9 14 21 24 8
429 8 2
247 9 16 23 22 10 3
397 9 16 23 31 15 17
531 6 4 2
130 8 8 7 1
382 6 3 .
2166 55 63 76 33 20

B
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val, as opposed to a spectral density. The spectra are seen to
be red in nature, and two regions of different slope can be dis-
cerned. Wave numbers below 0.6 cm™' are very well resolved
by the model, and the energy level is low at the poorly re-
solved wave numbers above 1.0 cm™.

4. SPIKE-RANDOM EXPERIMENTS

The random forcing used to create the background field of
internal waves became inefficient at changing either the shape
or the amplitude of the spectrum. This was because the high
wave numbers were saturated and the method was an in-
efficient one for building up energy in the low wave numbers.
It is for this reason that the background spectrum does not
represent an equilibrium spectrum. Once this background
field was obtained, it was of interest to perturb the system as
an initial condition with energy in different parts of the spec-
trum. This allowed a study of the system’s evolution and was
used to create an equilibrium spectrum. Discrete modes in
vorticity were introduced initially into the background inter-
nal wave field, and integrated for 1000 s. The modes were as
follows: case I, (2, 1) and (1, 1); case IL, (6, 3) and (5, 5); and
case III, (20, 18) and (10, 18) (see Figure 2). Wave number
spectra were computed over four blocks 250 s in duration. The
total energy wave number spectra for the three cases are pre-
sented in Figure 6, and the arrows in the lower part of the fig-
ure mark the wave numbers at which energy was introduced.
The salient features of the three experiments can now be de-
scribed. Case I, block 1 (0-250 s) shows a large amount of en-
ergy in the wave number band containing (2, 1) with neigh-
boring bands containing more energy than in the initial
background spectrum. Note that in a short time of only 307 a
significant amount of energy was transferred from (2, 1) to its
neighboring wave numbers. In block 2 (250-500 s) this trans-
fer to intermediate wave numbers is even more apparent, and
as the principal triad components populate this wave number
region, the effects of the previously discussed energy cycle are
being observed. By block 4, the band containing (2, 1) regains
some of its initial energy with the difference going to higher
wave numbers, which show a net increase in energy. Dis-
sipation due to wave breaking is occurring, and a decrease in
the total energy from block 1 to block 4 can be observed.

Energy was introduced at intermediate wave numbers in
case II. Peaks representing the modes (6, 3) and (5, 5) are evi-
dent in block 1 and a significant transfer of energy to lower
wave numbers has occurred during this first interval. A de-
crease in energy from block 1 to block 4 occurs due to dis-
sipation by wave breaking, and the greatest energy loss exists
at intermediate wave numbers where both wave breaking and
wave-wave transfers occur. Case III introduces energy at very
high wave numbers, and any energy change is dominated by
wave breaking, although a small degree of wave-wave inter-
actions takes place. It should be pointed out that the input en-
ergy for these high wave number modes is relatively low; this
is because the region is very close to saturation and it is diffi-
cult to introduce energy without causing a high degree of
wave breaking.

A wave band analysis was performed to demonstrate the
manner in which energy was distributed in wave number
space. Six bands were chosen such that the first band con-
tained modes of wave numbers ranging from the gravest to
Ak, the second band contains waves from the gravest mode to
2Ak, and so on, until the sixth band which contains the total
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Fig. 3. The average spectra and the dispersion due to individual spectra for the horizontal and vertical kinetic energies (|u,|%/2, |w,|?/2) and
the potential energy (g?|p,,|2/2N?) are presented for the finite amplitude, random internal wave field. The probe position is (0.33L, 0.38H).
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Fig. 4. The average potential energy spectra at four probe posi-
tions, (0.20L, 0.16H), (0.33L, 0.38H), (0.060L, 0.93H), and (0.81L,
0.50H), from the random internal wave field.

energy in all waves. Table 1 shows the band distribution, and
results from this analysis are presented in Figure 7.

For case I, band 1 oscillates during the first 307, indicating
that wave-wave interactions are taking place. Energy is con-
tinually being pumped to the higher wave numbers as in-
dicated by a relative increase in the difference between band 5
and band 6. After a short time (~607), the oscillatory behav-
ior ceases and the overall energy decreases, implying that dis-
sipation by wave breaking is more important than wave-
wave interactions in removing energy at each band. Case II
shows a more direct cascade to higher wave numbers. Ini-
tially, bands 1 and 2 grow, indicating wave-wave transfers and
a decascade of energy, but in a short time (less than 307) a
large amount of energy goes to high wave numbers, and dis-
sipation via wave breaking occurs. In case III a small amount
of energy was introduced by high wave numbers which are
near saturation. No indication of wave-wave interactions ap-
pear, and the energy is slowly decaying due to wave breaking
dissipation.

5. BAND-RANDOM EXPERIMENTS

It is unquestionably realized that determining the energy
transfer for internal waves in a realistic system requires the in-
vestigation of energy input over a band of wave numbers
rather than at discrete modes. Three numerical experiments
were conducted where energy was placed as follows: three nu-
merical experiments were conducted where energy was placed
in a low wave number band (case I), an intermediate wave
number band (case II), and a high wave number band, case
III (see Figure 2 for the initial wave components used in each
experiment). The initial amount of energy placed in the wave
number bands was approximately inversely proportional to
the wave number. This is because the high wave numbers can-
not sustain the same energy as the low wave numbers due to
wave breaking. This initial energy is not an important factor
in determining the final behavior and shape of the spectra.

Wave number spectra for the total energy are presented in
Figure 8 for the band-random experiments. The format is sim-
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ilar to that of Figure 6, and the marked intervals in the lower
portion of the figures show the band of wave numbers at
which energy was introduced. In case I, a transfer of energy
from low to intermediate wave numbers occurs within the first
block (250 s), and energy fills the high wave numbers by the
second block, while the energy at low and intermediate wave
numbers decreases. A loss of total energy occurs over the en-
tire spectrum due to dissipation resulting from wave breaking.
Case II shows some initial transfer of energy from inter-
mediate to low wave numbers, and the high wave numbers are
now being fed energy directly and more rapidly than in case I.
Following block 1, the overall energy level decreases due to
wave breaking, and again some minor transfer of energy to
the intermediate wave numbers occurs. In case III, where en-
ergy is placed at high wave numbers, a small degree of wave-
wave transfer occurs in the first block, and then energy dis-
sipates at all wave numbers due to wave breaking, as evi-
denced by an overall decrease in the energy level at all wave
numbers. The spectral representation is not ideal for observ-
ing energy transfers but does show the characteristic slopes at
various times during the experiment.

Notice that the spectral slope of the high wave numbers
changed during and after intense wave breaking. For instance,
during the time interval of intense breaking (block 2) in cases
I-11I the spectral slope is steeper than the slope at the last time
interval (block 4), where light breaking was observed.

A better representation for observing energy transfers in
wave number space is the wave band analysis shown in Figure
9, where the cumulative energy in each wave band is given as
a function of time, similar to that shown in Figure 7. Case I is
presented in Figure 9a. The energy initially contained in
bands 1 and 2 is rapidly (~107) distributed to other bands
containing higher wave numbers. This cascade continues until
approximately 307, and most of the input energy is lost to ei-

110’y

T T T T T—r T —T T

o1 051 5 10 50
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Fig. 5. Wave number spectra for the random internal wave field
energy are presented for four consecutive time intervals following the
build-up of the random wave field.
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Fig. 6. Total energy wave number spectra from the spike-random experiments for four consecutive time intervals. The
arrows mark the model wave number at which energy was introduced.

ther diffusion directly or has been transferred to high wave
numbers. A very small degree of energy transfer back to band
1 occurs at 307, and the system is now predominantly losing
energy via wave breaking. Case II, given in Figure 95, shows a
rapid (less than 107) energy loss of the intermediate wave
band 3 to bands 2 and 6 predominantly, and band 1 to a lesser
degree. In subsequent times, band 2 is losing energy to high
wave numbers with the total energy (band 6) decaying due to
breaking. One should note that the dissipation rate is band, or
wave number, selective, where band 1 decreases slowly, while

WAVENUMBER BAND ENERGY: SPIKE-RANDOM

EXPERIMENT 7

bands 4, 5, and 6 decrease much more rapidly with respect to
time. Case III is presented in Figure 9c, where the energy in-
put is at high wave numbers, and energy is transferred to
higher wave numbers very rapidly with only a small amount
of energy transfer to lower bands via wave-wave interactions.
The common feature for all three experiments is the rapidity
of the energy transfers, the pumping of energy to the high
wave numbers, and the diffusion due to wave breaking.

The wave-wave interactions occur on a relatively short time
scale of order 10T in all three experiments (questioning the

—--— BAND 4
.~ BAND 5
: BAND 6

&~ 10

v

R4

T s

<

u 0

&~ 10

g

o

E S

<

u o

o U 1 J 1 I . B
o 20 40 60 80 100 120

t
Al
(b)

&< EXPERIMENT 111

3

o~

-~ I T T T T T 1

ur o 20 40 60 80 100 120
Vs

()

Fig. 7. Energy within six wave number bands for the three spike-random experiments.
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validity of any weak interaction assumptions), and this time
scale depends on the band energy levels. Diffusive time scales
7, can be computed for the overall dissipation due to localized
wave breaking, and they are as follows: case I, 7, = 124T; case
II, 7;; = 104T; and case III, 7;; = 1687, where 7, depends on
the energy levels of the various bands. The eddy diffusivities
for the gravest mode from the three cases can be estimated

WAVENUMBER BAND ENERGY: BAND-RANDOM

EXPERIMENT 1

and are 0.50, 0.76, and 0.47 cm?/s, respectively; these diffusi-
vities agree remarkably well with the estimated oceanic val-
ues.

A more descriptive representation of this complicated, in-
teracting system of internal gravity waves, where both wave-
wave interactions and dissipation due to wave breaking are si-
multaneously occurring, is given in Figures 10a-10c. Case I of
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Fig. 9. Energy within six wave number bands for the three band-random experiments.
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and the parallel lines denote a loss of energy. The seventh block, labeled diffusion, represents energy loss over all wave

numbers due to wave breaking.

the band-random experiment is presented in Figure 10a, while
cases II and III are shown in Figure 105 and 10c, respectively.
Case I is shown for a duration of 960 s, while cases II and III
are shown for 480 s, as by this time, diffusive processes out-
weigh wave-wave interactions and the time rate of change is
very slow. The graphs depict the amount of energy in each
band, in contrast to the cumulative band energy shown in Fig-

ures 7 and 9. The previous representation showed the energy

contained in a band of wave numbers from K, to K, while the
present representation shows the energy contained in an in-
cremental band of wave numbers from K; to K, ,. The vertical
scale is in energy units (cm?/s?), and the block height (stippled
and drawn with a solid line) represents the energy contained
in that band at the given time. The diagonal lines in the upper
portion of the block represent an increase in band energy rela-
tive to the previous time (60 s), whereas the areas marked with
parallel lines represent energy loss relative to the previous
time (60 s). The seventh band represents energy loss over all
wave numbers relative to the previous time, and this loss is
due to wave breaking. Such a representation provides a
clearer picture of energy transfers between bands due to

wave-wave interactions and energy losses due to wave break-
ing.

Case I, Figure 10a shows the ¢ = 0 background spectrum
plus the additional energy placed in the lower bands 1 and 2.
After a time of 60 s (less than 87), band 2 loses a large amount
of its energy, while band 1 loses a smaller amount, and this
loss goes into bands 3-6 in differing proportions with a small
amount of wave breaking dissipation occurring. The time
scale for various wave-wave interactions can be observed in
this representation, where band 1 gradually loses energy until
t = 360 s and then begins to regain energy, whereas band 2
loses energy until ¢ = 180 s and then begins to regain energy.
Band 3 receives most of its energy within 120 s and loses en-
ergy after ¢ = 180 s. Band 6 reaches a maximum amplitude
due to wave-wave transfers by ¢ = 180 s, and from that time
on, wave breaking becomes significant. The energy lost due to
wave breaking is a substantial percentage of the energy trans-
fer due to wave-wave interactions, but one cannot conclude
that breaking is predominantly taking place in band 6. As a
matter of fact, band 6 gains energy during the times 180 and
240 s when breaking and dissipation are intense. Wave-wave

Diffusion
(Breaking)

(b)

BAND-RANDOM ]I
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interactions and breaking continue throughout the experiment
as the system slowly approaches an equilibrium spectrum.

Case 11 is presented in Figure 105 and during the first 120 s
the cascade and decascade characteristic of wave-wave inter-
actions is occurring within the low and intermediate wave
bands. A considerable depletion of the input energy band oc-
curs in a short period, followed by a period when wave break-
ing becomes an important factor in the energy loss for each
band. Again, the system slowly approaches an equilibrium
state. Case III is presented in Figure 10c, and the initial en-
ergy is predominantly in band 4. (Notice that Figure 2 shows
initial perturbation ranges from band 2 to band 4, but band 4
contains the greatest energy.) Similar to the previous case,
most of the wave-wave interactions occur in the first 120 s. It
is interesting to note the transfers at different times, at t = 60 s,
band 4 transfers energy to bands 5 and 6, while at t = 120 s,
bands 2 and 3 are gaining energy. Again, energy loss due to
wave breaking represents a significant percentage of the over-
all energy transfer.

We conclude from these results that wave bands 4, 5, and 6
become saturated by time 480 s, and inspection of the three
experiments shows that the amplitude of these bands remains
similar. We can also conclude that the equilibrium amplitude
for wave band 3 is given at its final state of cases I and II. Re-
sults for wave bands 1 and 2 are inconclusive, but it appears
that the amplitudes finally reached in case I represent approx-
imate equilibrium values.

It is not implied that further energy input to any band will
produce instantaneous breaking, but what is implied is that
further energy input may be rapidly transferred by wave-wave
interactions to higher wave numbers where breaking becomes
likely. Such a cascade of energy, however, is not necessary for
breaking, as the high wave numbers are near saturation and
are superimposed on the lower wave numbers in physical
space. Figures 11a-11c show streamline contours for cases I-
IIL, respectively, at four different times. Regions in the flow
field where the local eddy viscosity is nonzero due to over-
turning are indicated with blocks described in the legend.
These regions are shown only on the right of each figure (un-
shaded area). In case I, we find a high degree of overturning
soon after the additional energy input. A subsequent reduc-
tion in overturning occurs as the system evolves, and this is
consistent with the evolution described in Figure 10. The re-
sults are similar for cases II and III, where at times soon after

the energy input, a high degree of overturning exists. This
wave breaking continues until the energy in each wave band
is low enough, and the superposition of the waves rarely pro-
duces a situation in physical space where overturning can oc-
cur. This superposition means that any additional energy in-
put to the low wave number modes can result directly in wave -
breaking. This implies that the amplitude of a single wave is a
sufficient criterion for overturning, but not a necessary one. In
fact, the collective contribution of all waves at a single posi-
tion in physical space determines the conditions for breaking
in a full spectrum. This point is relevant to the discussions of
Frankignoul [1972] and Garrett and Munk [1972b], where the

- criterion for a single wave or band of waves was considered

without treating the background contributions arising from
low-frequency, low wave number oscillations. In the case of
overturning, the criterion developed by Orlanski and Bryan
[1969] involved the comparison of an exchange velocity (the
time derivative of the density divided by the horizontal deriv-
ative of the density) to the advection velocity. The exchange
velocity equals the phase velocity only for a single wave, and
in this case, overturning occurs when the advection velocity
exceeds the phase velocity. The criterion of advection velocity
exceeding exchange velocity, on the other hand, can be used
in the full spectrum case provided that the quantities represent
contributions from all waves. In the case of shear instability,
the Richardson number criterion discussed by Phillips [1966]
must account for the collective values of wave shear and den-
sity gradient. A related conclusion which can also be drawn
from the numerical experiments is that although the final am-
plitude for each wave individually was small, the collective
nature of the wave field yields a system in equilibrium. The
small amplitude for individual waves in this saturated spec-
trum resulted in linear relationships for the kinematical wave
properties, but the wave field became very nonlinear when ad-
ditional energy was introduced.

6. ENERGY BUDGET

The net amount of energy lost or gained at each band is
shown in Figures 10a-10c and gives a clear description of the
transient evolution of the energy input at different bands,
where the final energy sink is dissipation due to overturning.
Neither the amount of dissipation of each wave number or
wave band nor the amount of gain or losses of energy by wave
interaction can be determined from the previous results. It
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Fig. 11. The contours of stream function at four different times are shown. Blocks indicate severity of local mixing due to
wave breaking. The shaded region indicates that only half of the domain is wave breaking.

will be very important to understand and evaluate the amount
of energy transfer by wave interaction and the loss by dis-
sipation for each wave number in the spectrum. The energy
balance equation for each Fourier component can be derived
by making use of equations (1)-(3):

(V0w = T VIaen = [80.daan [V2 Vilaw  (7)

[0 pen — (2 0)]MN = [B‘Px]MN + [Vk va]MN ®)

Multiplying (7) by minus the Fourier component of Y(—,»)
and (8) by (—(g/B) Orn) integrating over the whole domain
and making use of the boundary conditions, the equation of
the energy budget is given by

total energy
1 ([Mz)* [#)? 2. & 2}
> {( : j +(H) Waol® + B Bunl”},

= Y I V) + %MNIJ(\;«, .

- ‘PMN[VVv{]MNdr lg‘;amv [V"va]mv (O]

appropriate summation over the horizontal and vertical wave
numbers (M and N) give the energy budget at each total wave
number (k).

E,, = (NLI), + (diss), (10

where the energy is given by

1 Mz
E.=~ =
SSPRRL

The NL interact

ML) = 3 3 = daenld W Olaaw + B Iy Ol (12)

M N(Mk) ﬂ

2
+

Nn 2, 8 2
—ﬁ*ﬂ [Yaenl* + B [Oren>  (11)

and the dissipation

dissh= 3 Y — Vsl VVilun + & Oun [VieV8lw  (13)
k)

M N(M, B

The quantities (NLI), and (diss), were numerically computed
and integrated over time for the three band-random experi-
ments. Results are presented in Figures 12a-12¢, where the
time integration extended over 250 s and corresponded to
block 2 of data (as shown in Figure 8). Results from experi-
ment I are presented in Figure 124, where large negative val-
ues occur for (NLI), at wave numbers of approximately 0.15
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Fig. 12a. The energy fluxes and dissipation as a function of total wave number are shown; the wave bands and number of
Fourier components are for comparison.

cm™'. Energy was initial],y placed at low wave numbers (k =
0.043 to 0.112 cm™"), and negative values of (NLI), were ob-
served for block 1 data. During block 1, rapid wave-wave in-
teractions resulted in a transfer out of the very low wave num-
bers and into the adjacent wave numbers (k ~ 0.1 to 0.2
cm™"). Therefore during block 2, it is the wave numbers from
0.1 to 0.2 cm™ which are transferring energy back to the
lower wave numbers, in a decascade process. The dissipation
term is approximately constant and negative, although smaller
values are associated with low and medium wave numbers.
The large negative values of (NLI), are balanced by all the
positive values, since energy is lost only by dlss1pat10n (Note
that the semi-log graph distorts the area of high wave number
region.)

Figure 12b represents the energy exchange for experiment
I, where the input of energy corresponds to medium waves,

and a large negative peak occurs at medium wave numbers.
There is an energy transfer to lower wave numbers and a cas-
cade to higher wave number. The dissipation is small and
fairly constant in wave number, similar to the previous case.
Figure 12c¢ corresponds to band-random case III (high wave
numbers), where the negative peak occurs around 0.3 cm™!,
and the flux of energy is to lower and higher wave numbers.

By inspection of Figure 12a, 12b, or 12¢, it is seen that the
positive area on the left is considerably smaller than the area
of the larger negative peak, and this excess of energy should
be distributed over all the higher wave components. This bal-
ance is difficult to observe due to the logarithmic representa-
tion which decreases the wave number interval, thus making it
misleadingly small.

A clearer representation of the energy fluxes between bands
is presented in Figure 13, where only the first 407 (320 s) are
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presented. Each curve represents the sum over k for

kptk kp+k
‘,’?‘ (NLI) ; (diss)

where the incremental wave number bands are defined in
Table 1. Figure 13 depicts the process of energy transfer in the
experiment and shows the fhixes (upper) and dissipation
(lower) of energy at each band for the band-random case I ex-
periment. During the first 207, energy in bands 1 dnd 2 de-
creases, while all other bands show an increase in energy (con-
sistent with Figure 10a). The noteworthy feature is the
constant increment of energy flux to high wave numbers
(band 6). This occurs to such a large degree, that aftér 207 vir-
tually all of the energy loss in bands 1 and 2 goes to band 6.
Accordingly, there is an equivalent amount of energy lost by

dissi_paii‘on of the high wave numbers (band 6) and negligible
at the other bands. ‘

A cohsistent picture of the energy transfer for internal
waves above the equilibrium can be constructed from the pre-
vious results (Figures 12 and 13). Wave-wave interactions
mainly contributé to energy transfer between similar total
wave numbers, that is, wave-wave interactions are lgcal inter-
actions in wave number space. Energy fluxes between differ-
ent scales are mostly controlled by the strong interaction of
very short waves with long and medium wavelength modes,
where localized overturning and dissipation will occur at the
small scales when excess energy is introduced. As previously
stated, the energy need not pass through all intermediate
scales but can directly go to high wave numbers due to over-
turning.
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The dissipation rate is approximately constant as a function
of total wave number (Figure 14). The deviations from a con-
stant value are related to the ‘spikes’ in the energy spectrum,
and one can define a simple distribution function by dividing
dissipation by the energy spectrum,

diss(k)

~ /2
Bk " F

F(k) = (14
This quantity is then much smoother than diss(k) or E(k)
taken separately and obeys an approximate 5/2 power law.
One should notice, however, that to parameterize the dis-
sipation by the formula given in (14) will require the explicit
nonlinear interaction to higher wave numbers by overturning
since these waves are the major contribution to the total dis-
sipation. Spectral models where only weak interactions are

The same as Figure 12a but for case III.

simulated with be unable to reproduce the large fluxes to
higher wave numbers which are required for effective dis-
sipation. For such models a complete parameterization of the
nonlinear strong interaction to higher wave numbers and the
dissipation of (14) should be included.

7. PERTURBATIONS OF THE EQUILIBRIUM SPECTRUM

It was suggested in the previous section that the final state
in band-random case I was an equilibrium spectrum (as op-
posed to a background field). The background spectrum was
one in which the high wave numbers were saturated but the
low waves were certainly not. Energy was introduced at low
wave numbers in case I (spike-random or band-random) and
the long time field appeared to be an equilibrium one where
high wave numbers are saturated. This hypothesis was tested
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by again introducing energy at low wave numbers to the final
state of experiment 1. Before discussing those results, let us
compare this solution with the evolution of low wave numbers
in two other examples to illustrate the different behavior of
the nonlinear interactions.

The ‘two low wave number modes chosen were those of a
resonantly interacting triad similar to the spike-random ex-
periment given in case I of section 4. The evolution of the
triad was studied in three situations: (1) the triad evolves with-
out the presence of a background field, (2) the triad evolves in
the presence of the random, small-amplitude background
field of internal waves (spike-random case I), and (3) the triad
evolves in the presence of the finite amplitude spectrum taken
from the final state of band-random case 1. The evolution of
the triad in the absence of any background field is initally
similar to that predicted by the solutions to the gyroscopic
equations [Orlanski and Cerasoli, 1979)]. Multiple triad inter-
action eventually excites modes other than the primary triad
components, making the evolution more complex than that
predicted by the gyroscopic solutions. Given its initial behav-
ior of this system, we refer to it as the gyroscopic regime. The
triad evolution in the second example is referred to as the
Hasselmann regime. This title is chosen, as the system appears
to have the characteristics necessary to use Hasselmann’s for-
malism (small amplitude, random, and Gaussian). We do em-
phasize that once wave breaking becomes as important as
triad interactions, Hesselmann’s theory will not be valid. The
final case is referred to as the strong interaction regime, where
the triad is evolving in a finite amplitude field of internal
waves.

Results from the three cases, gyroscopic, Hasselmann, and
strong interaction regime, respectively, are presented in Fig-
ure 15. The energy band analysis is situated on the right of the
figure, and a thin solid line at the initial energy level is in-
cluded to better observe the total energy decay. The left side
of the figure contains a triangle representation which is useful

for describing triad evolution and is discussed by Orlanski and
Cerasoli [1979]. The total energy in all components allows one
to subdivide the energy into the energy of any two waves plus
the rest. If no breaking occurs, the sum of these three energies
will be conserved (neglecting the very small laminar viscos-
ity). The time evolution of these three energies can be graph-
ically presented as a curve inside an isosceles triangle, where
the height represents the total energy. A point along the curve
has the property that sum of the distance to each side of the
triangle is equal to the total height. Therefore the distance to
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Fig. 14. The time integration of the dissipation versus total wave
number for the Fourier time intervals of experiment I.



4120 ORLANSKI AND CERASOLI: ENERGY TRANSFER AMONG INTERNAL GRAVITY MODES

TRIANGLE ENERGY

£-£5-,

WAVENUMBER BAND ENERGY

E; (em?/sec?)
w

E; (em?/sec?)
w

£ f T T T T T —
o 20 40 60 80 100 120
t
A
(b)
Initial Conditions.
2 waves + Finite Ampl. P
A12:0002 v 107 =
A1) =0.001 @ ~— g -
Grmre R e —— S ol i
Pl 3 S = ==
Ers=50% £y £ 5 e
<
¥ oo
1 5 T T T T T 1
20 40 ' 60 80 100 120
t
i

(<)

Fig. 15. Energy evolution in the triangle space (see text) is shown on the left and the energy of the different wave bands
as a function of time on the right. Parts 4, b, and ¢ correspond to the single triad input, to the single triad plus background
spectrum, and the triad plus the equilibrium spectrum, respectively. Notice that E(1,1) = E, and E(1,2) = E,.

each side represents the energy. Three limiting cases are that
(1) E, has total energy, (2) E, has total energy, and (3) E,E, =
0, the rest of the modes have the total energy. These three
cases correspond to points on the three respective vertices.

The triangle figure for the gyroscopic regime shows approx-
imate straight lines for the first few evolutionary periods. As
stated previously the system evolves in a manner similar to
that given by the gyroscopic solutions, and differences exist
due to the progressive excitation of nonprimary triad waves.
In the Hasselmann regime, excitation of nonprimary waves is
enhanced due to the small-amplitude background spectrum.
This regime is far less periodic than the gyroscopic regime as
seen in both the triangle plot and the wave band energy plot.
Dissipation is also greater in this second example. Finally,
there is a lack of any periodicity in the strong interaction re-
gime due to the dominance of overturning and strong wave-
wave interactions over triad interactions. A common feature
for the Hasselmann and strong interaction regimes is the fact
that the final points in the triangle figure are similar. (Note
that these final states of the Hasselmann regimen can not be
described by Hasselmann formalism; it was confirmed that the
wave field is no longer Gaussian.) This tendency toward simi-
lar end states is related to the saturation of high wave number
bands and the wave breaking present in such a system.

Let us now come back to the mainstream of our discussion.
The finite amplitude spectrum obtained at the end of the
band-random case I experiment was believed to be in equilib-
rium, as was suggested in the previous section. A similar anal-
ysis as shown in Figure 10a was done for this new case where
a perturbation was introduced to the equilibrium state. Re-

sults are shown in Figure 16. In the first 60 s the energy lost by
wave band 1 is balanced by dissipation due to wave breaking.
The high wave number bands change very little, since they are
saturated. It is interesting to contrast the evolution of this case
with that of case I in Figure 10a. It was mentioned before that
substantial changes in neighboring bands were observed in
case I for the first 180 s due to wave-wave interaction and
wave breaking with dissipation occurring after that. In this
sensitivity study, the change in band energy level is less no-
ticeable than in case I, implying that wave-wave interactions
are not as predominant as in case I. On the other hand, wave
breaking is activated far sooner, as can be seen by the fact that
the energy lost in the first band is approximately equal to the
energy removed by diffusion due to wave breaking (band 7).
The final spectrum at ¢ = 960 s is still decaying, and previous
experiments suggest that this will continue until the equilib-
rium levels are achieved. One should note that the spectral
shape changes very little.

Similar to Figure 13, Figure 17 shows NLI and diss for the
final experiment. It should be noticed that the negative fluxes
at the lower wave band are exclusively balanced by the fluxes
at the higher band 6 with a compensatory loss due to dis-
sipation. The result again seems to confirm that a spectrum
can be in equilibrium (minimum loss of energy by dissipation
due to overturning) if not perturbed, but efficient cascading to
short waves and dissipation will occur if energy is introduced
at any scale.

Throughout this paper, we have purposely avoided com-
paring our two-dimensional results for internal gravity waves
with the three-dimensional oceanic counterparts. This was be-
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Fig. 16. The same as Figure 10a but for the perturbation of the equilibrium state.

cause of the model’s strong assumptions, that is, two dimen-
sionality and nonrotation. One may argue that for frequencies
far from the inertial frequency, or close to the buoyancy fre-
quency, the rotationless approximation is justified. The justifi-
cation for two-dimensional is harder to support. It was un-
clear whether a two-dimensional equilibrium spectrum
existed, and if so, what shape it took; this alone justified the
study of a two-dimensional simulation. Also, the study of
wave-wave interactions requires a large number of waves, and
an even larger number if wave breaking is included. At least
50 waves in each direction should be resolved, making any
three-dimensional model prohibitively large. The interplay
between wave-wave interactions and wave breaking is present
in two-dimensional systems. Perhaps this interplay does not
have the intensity present in three dimensions, or precisely the

BAND-RANDOMI B

same role, but we believe that the physics will be similar and
accurately modeled with sufficient resolution. The two-dimen-
sional model will lack interactions found in a three-dimen-
sional simulation; if anything, this should underestimate wave
breaking phenomena, as it is well known that three-dimen-
sional systems cascade energy to high wave numbers more
readily than two-dimensional systems. With the preceding in
mind, we present some recent data on oceanic power spectra
[Eriksen, 1978] in the lower portion of Figure 18, where the
frequency range is well separated from the inertial frequency.
Power spectra from the two-dimensional model are shown in
the upper portion of Figure 18, and the two sets have some
striking similarities. The slopes for frequencies below N are
approximately equal, and the rise in the vertical velocity
spectra near N is similar. Oceanic spectra fall off less rapidly
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Fig. 17. The same as Figure 13 but for the last experiment.
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Fig. 18. The upper portion shows spectral densities for horizontal and vertical velocities and buoyancy taken from the
numerically generated random internal wave field. The lower portion shows similar spectral densities taken from oceanic

observations by Eriksen [1978].

for frequencies above N than for the model. Some of the en-
ergy at frequencies above N is probably due to microstructure,
while turbulence is the prime candidate for the majority of en-
ergy above N. If so, the oceanic spectra and the numerically
derived spectra share a similar phenomenological description.
Eriksen [1978] observed sporadic wave breaking at all fre-
quencies, and no clear distinction between overturning [Or-
lanski and Bryan, 1969] or shear instability [Phillips, 1966]
could be made. Our numerical simulation is one where local-
ized, sporadic patches of overturning (as shown in Figure 11)
account for dissipation. The model allows for shear instability
in the sence that ‘Kelvin-Helmholtz’” waves can grow if the
conditions are appropriate. Dissipation will occur when the
instability grows to a sufficient amplitude and produces a
gravitational instability. This is in contrast to using a local
Richardson number criterion to activate the eddy viscosity.

8. SUMMARY AND CONCLUSIONS

Numerical computations were performed concerning wave-
wave interactions for a broad range of conditions for the most
general solutions of a two-dimensional numerical model
which included a finite amplitude spectrum of waves.

A finite amplitude, random internal wave field was gener-
ated by a long time integration of the two-dimensional model

with random body forcing. The wave number and frequency
spectra were relatively smooth and red in nature, and two
basic sets of experiments were performed using this back-
ground spectrum. In the first set of experiments, labeled spike-
random, energy at individual modes was introduced to this
background field, and the model integrated in time. Three ex-
periments were run where energy was introduced at low, me-
dium, or high wave numbers. Energy introduced at low wave
numbers was found to be effectively transferred by wave-wave
interactions during the first 30 buoyancy periods, and when a
significant amount of energy had been transferred to the high
wave numbers, wave breaking became important for dis-
sipation; this occurred by 607. When energy is introduced at
medium wave numbers, a decascade to low wave numbers oc-
curs during the first 307, and then wave breaking becomes im-
portant due to the cascade to higher wave numbers. In the
high wave number case, energy was introduced at wave num-
bers close to saturation, and virtually all energy goes to wave
breaking.

In the second set of experiments, labeled band-random, en-
ergy was introduced over a band of wave numbers instead of
introducing only one or two discrete modes. These experi-
ments generally confirm the results of the spike-random case,
and the results were represented in Figures 10a-10c, where
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the time evolution of wave bands is shown along with the dis-
sipative energy loss. The background spectrum appears to be
at a saturation level for the high wave numbers but not for the
low ones. In the first experiment the energy was introduced at
the low wave numbers, and triad interactions accounted for
energy transfers during the first 10 buoyancy periods (Figure
13). Subsequently, wave-wave interactions and wave breaking
played important roles in the transfer of energy. Wave-wave
interactions can represent the excitation of nonresonant
forced waves, as well as resonant waves. By the end of this ex-
periment, it seemed that an equilibrium spectrum had
evolved. The second experiment introduced energy at me-
dium wave numbers, and both decascading of energy to lower
wave numbers and cascading to high wave numbers ac-
counted for the loss of energy from medium wave numbers
during the early times. By around 157 (180 s), wave breaking
became an important feature, as seen in Figure 105, where
block 7 grows in amplitude. The system reached an equilib-
rium from medium wave numbers upward, and the lowest
wave numbers did not grow even though they were far from
saturated. This point will be taken up later. In the third exper-
iment, energy was introduced at high, although not the high-
est, wave numbers and energy was rapidly transferred to
higher wave numbers where dissipation occurred. Eddy dif-
fusivities for the three band-random experiments were calcu-
lated for the gravest mode and found to be of order 1 cm? s.

A complementary result to the energy loss or gain by each
band in Figures 10a-10c is described in section 6 (Figures
12a-12c), where the total energy transfer by nonlinear terms
and the viscous dissipation (as parameterized by gravitational
overturning) are computed. Those terms are shown as a func-
tion of wave number and integrated over time. It was found
that the nonlinear advection accounts for smoothing the spec-
trum over neighboring waves. However, when the equilibrium
level was exceeded, the energy flowed directly from low and
medium wave numbers to high wave numbers where wave
breaking occurred. Dissipation was approximately constant
and a function of wave number and a dissipation ratio func-
tion was found to be proportional to k>,

The assumption that the final state reached for band-ran-
dom. experiment I (Figure 10a) was an equilibrium spectrum
was tested in the last experiment of section 7. An initial input
of energy was introduced to the equilibrium spectrum, and the
time evolution showed that almost instantly wave breaking
dissipated as much or more energy than the redistribution
done by wave-wave interaction. This process continues until
the level of energy of the low wave number waves is such that
no further wave breaking is produced.

The main conclusions of the final set of experiments, along
with much of the previous work, can best be described if one
assumes a sequence of steps whereby the energy level is grad-
ually increased. Multiple triad interactions will result in a fill-
ing of the energy spectrum when energy is introduced in a
pamc,ular band of wave numbers. For bands where the energy
level is high enough to result in nonlinear time scales of only a
few 'intrinsic periods, wave-wave interactions ~(fesonant and
nonresonant) provide the mechanism for filling the spectrum.
The energy transfer becomes more and more rapid with in-
creasing energy, and no universal spectrum appears to result
from these processes. As the energy input increases, energy
will accumulate in high wave numbers until localized in-
stabilities (overturning) occurs. From that point on, these high
wave numbers will remain at a gturation level such that any

ORLANSKI AND CERASOLL: ENERGY TRANSFER AMONG INTERNAL GRAVITY MODES 4123

additional energy input at the saturated band, either directly
or via wave-wave interactions, will result in localized mixing.
On the other hand, additional energy input at bands other
than the saturated band will result in an increase of low and
medium wave band energy (via wave-wave interactions) until
an equilibrium level is achieved. The equilibrium level of any
particular band will depend on the high wave number bands
being saturated. For instance, any energy above the equilib-
rium at low wave numbers will produce localized mixing in
physical space almost instantaneously. This does not mean
that the low wave numbers are saturated, as their energy lev-
els can be much lower than a saturation level. What takes
place at or near an equilibrium level is that the contributions
from high and low wave numbers result in localized regions in
the physical space where the criterion for instability is almost
met. In fact, this superposition effect means that low and me-
dium wave numbers are far from meeting any breaking crite-
rion when taken individually, yet cannot tolerate any addi-
tional input energy when in the presence of a saturated band
of high wave numbers.

It is clear that the sporadic, localized patches of turbulence
in physical space are by no means localized in wave number
space. Even though a band of saturated high wave numbers is
necessary to produce the localized mixing, a continuous cas-
cade through all the scales from low to high wave numbers is
not necessary. Consider the case of overturning, where the cri-
terion is that the total vertical density gradient must reverse
sign at some point in space. Suppose that a low and a high
wave number are superimposed such that the criterion for
gravitational instability is nearly met. Energy input at the low
wave number will produce a region in space where this crite-
rion is met and results in overturning without a continuous
energy cascade from low to high- wave number. This state-
ment must be qualified, as overturning is a manifestation of
gravitational instability. The long waves are stable to in-
finitesimal perturbations and cannot be considered in satura-
tion, but the superposition with small but finite short waves
makes the system unstable to finite amplitude perturbations,
as a consequence producmg short waves that are efficiently
dissipated.

Once an equilibrium amplitude is reached, wave-wave in-
teractions are inefficient for transferring energy from band to
band. On the other hangd, energy is very rapidly dissipated by
overturning when energy is introduced. Well-defined criteria
for overturning or mixing are possible in physical space, but
no simple criteria can be given involving wave number space
because of the complex superposition of many waves. Cer-
tainly more sophisticated numerical experiments using either
finite difference or spectral methods which include important
effects such as rotation, three dimensionality, and strati-
fication variability will give a more quantitative estimation of
energy budgets for internal gravity waves in the ocean. But
the qualitative picture given by this simple model may still
prove to be accurate. Ocean experiments can test some of the
suggested hypotheses by measuring the intensity of dissipation
as a function the distance from an energy source (oceanic
ridge, etc.). The present results predict that the dissipation will
be proportional to the deviation of the spectral energy level
from that of the umversal’ spectrum.
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